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Abstract — Cloud computing is a new computing paradigm
which uses the combination of two concepts i.e. “software-as-
a-service” and “utility computing”, provides convenient and 
on-demand services to requested end users by instantiating the 
infrastructure and using the resources dynamically. Load 
balancing in Cloud computing is still one of the main 
challenges for the researchers. As load balancing distributes 
the dynamic workload across multiple resources for achieving 
optimal resource utilization to ensure that no single resource is 
either overwhelmed or underutilized, this can be considered as 
an optimization problem. In this paper a load balancing 
strategy based on Simulated Annealing (SA) has been 
proposed which balances the load of the cloud infrastructure. 
To measure the performance of the algorithm, an existing 
simulator CloudAnalyst is modified and the simulation results 
show the overall performance of the proposed algorithm is 
better than of the existing approaches like First Come First 
Serve (FCFS), Round Robing (RR) and a local search 
algorithm i.e. Stochastic Hill Climbing (SHC). 

Keywords— Cloud computing; Load balancing; 
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I. INTRODUCTION 

A model for convenient and on-demand network access to a 
shared pool of configurable computing resources that can 
be rapidly provisioned and released with minimal 
management efforts is cloud computing [1]. Its 
infrastructure is used by businesses and users to access 
application services from anywhere in the world on demand. 
Thus it represents as a new paradigm for the dynamic 
provisioning of computing services, typically supported by 
state-of-the-art Data Centers containing ensembles of 
networked Virtual Machines (VMs) [2]. The biggest and 
best known Cloud Computing providers include Amazon 
with EC2, Microsoft with Azure and Google with 
GoogleApps (e.g. Gmail, Google Docs, Google Calendar). 
Also, there are some popular large scaled applications like 
social-networking and ecommerce which are benefited by 
minimizing the costs using cloud computing. Due to the 
exponential growth of cloud computing it has been widely 
adopted by the industry and thus making a rapid expansion 
in availability of resources in the Internet. With the demand 
of large scale internet applications on cloud, both 
developers and researchers need to think about handling of 
massive requests. Whenever such an outburst occurs, the 

primary challenge then becomes to keep the performance 
same or better. Thus in spite of glorious future of Cloud 
Computing, many critical problems still need to be explored 
for its perfect realization [3]  and load balancing is one of 
these important issues. 
To summarize, this paper makes the following contributions: 

 A soft computing approach based algorithm
Simulated Annealing (SA) has been used to solve 
this optimization problem to distribute the 
dynamic workload across multiple resources for 
achieving optimal resource utilization. More 
information on how this work differs from the 
other load balancing algorithms can be found in 
section II and section III. 

 The performance of the proposed algorithm is
compared with two commonly used scheduling 
algorithms FCFS and RR and a local search 
algorithm Stochastic Hill Climbing (SHC) [6] 
which is described in section IV. 

The rest of this paper is organized as follows: Section II 
gives an overview of the related work; Section III discusses 
the basic features of Simulated Annealing (SA) algorithm 
along with the implementation details of our proposed SA 
based load balancing algorithm. The simulator 
environments as well as the simulation work loads are 
explained in Section IV. Also Section IV presents and 
analyses the experimental results and Section V concludes 
the study and highlights future work. 

II. RELATED WORK

Load balancing in the cloud differs from classical thinking 
on load-balancing architecture and implementation by using 
commodity servers to perform it. Load Balancing allows 
distribution of workload across one or more servers, data 
centers, hard drives, or other computing resources, thereby 
providing Cloud Service Providers (CSP) a mechanism to 
distribute application requests across any number of 
application deployments located in data centres [4].  

There have been various research efforts on the approaches 
of Load Balancing. In [8], Minimum Execution Time (MET) 
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is used to assign each job in arbitrary order to the nodes on 
which it is expected to be executed fastest, regardless of the 
current load on that node. Another approach [5] Min-Min 
scheduling algorithm calculates the minimum completion 
time for every unscheduled job and then the jobs are 
assigned with the minimum completion time to the node 
that offers it this time. Yang Xu et. al. has proposed a novel 
model to balance data distribution to improve cloud 
computing performance in data-intensive applications, such 
as distributed data mining [9]. A few soft computing 
techniques like Ant Colony [7] are also reported in 
literature. Some existing scheduling algorithms like Round 
Robin and FCFS for load balancing also exist. In our 
previous papers, we proposed a local search algorithm 
Stochastic Hill Climbing [6] and Genetic Algorithm [4] 
based load balancing approaches in cloud computing. 

III. IMPLEMENTATION DETAILS 

A. Load  Balancing Using Simulated Annealing 
Load balancing is indispensable for cloud computing. 
Firstly, the cloud service provider (CSP) must use load 
balancing in its own cloud computing platform to provide a 
high efficient solution for the user. Secondly, a inter CSP 
load balancing mechanism is needed to construct a low cost 
and infinite resource pool for the consumer. Load balancing 
in cloud computing provides an organization with the 
ability to distribute application requests across any number 
of application deployments located in data centers and 
through cloud computing providers. 

The procedures for solving an optimization problem are 
divided into two categories.  Incomplete methods may not 
guarantee correct answers for all inputs. The well-known 
incomplete local search algorithm, Stochastic Hill Climbing 
that never makes "downhill" moves toward states with 
lower value, because it can get stuck on a local maximum.  
Complete methods which guarantee either to find a valid 
assignment of values to variables or prove that no such 
assignment exists. But they require exponential time in the 
worst case, which is not acceptable in the cloud computing 
domain. A purely random walk is complete but extremely 
inefficient. Simulated Annealing is an algorithm which 
combines hill climbing with random walk in some way that 
yields both efficiency and completeness. 

B. Simulated Annealing 
SA is a well known iterative improvement approach to 
optimization problems and also, it can be viewed as an 
algorithm used in statistical physics for computer 
simulation of the annealing of a solid to its ground state, i.e., 
the state with minimum energy. Given the set of 
configurations, a cost function and a neighbourhood 
structure, we can define the iterative improvement 
algorithm as follows. At the beginning of each iteration, a 
configuration  i  is given and a transition to a configuration j 
ϵ P(i) is generated where for each configuration i , P(i) is a 
subset of configurations, called the neighbourhood of  i.  If 
C(j) < C(i), the start configuration in the next iteration is j, 
otherwise it is i. If the transitions are generated in some 
exhaustive enumerative way, then the algorithm terminates 
by definition in a local minimum. Unfortunately, a local 

minimum may differ considerably in cost from a global 
minimum. Simulated annealing can be viewed as an attempt 
to find near-optimal local minima by allowing the 
acceptance of cost-increasing transitions. More precisely, if 
i and j ϵ P(i) are the two configurations to choose from, then 
the algorithm continues with configuration j with a 
probability given by min{1 , exp(-(C(j) - C(i))/c)} where c is 
a positive control parameter, which is gradually decreased 
during the execution of the algorithm. Thus, c is the 
analogue of the temperature in the physical annealing 
process. Probability decreases for increasing values of C(j) 
- C(i) and for decreasing values of c, and cost-decreasing 
transitions are always accepted. 

C. SA  for Load Balancing in Cloud 
The problem of load balancing can be formulated as 
allocating N number of jobs submitted by cloud users to M 
number of processing units in the Cloud at any particular 
instance of time .Each processing unit will have a 
processing unit vector (PV) which indicates the current 
status of processing unit utilization. PV consists of MIPS, 
indicating how many million instructions can be executed 
by that machine per second and β is the cost of execution of 
instruction and DL is delay cost. The delay cost is an 
estimate of penalty, which Cloud service provider needs to 
pay to customer in the event of job finishing actual time 
being more than the deadline advertised by the service 
provider , 

       PV = g (MIPS, β, DL)                         (1) 

Similarly each job submitted by cloud user can be 
represented by a job unit vector (JV). T represents the type 
of service required by the job, Software as a Service 
(SAAS), Infrastructure as a Service (IAAS) and Platform-
as-a-Service (PAAS). NIC represents the number of 
instructions present in the job; this is count of instruction in 
the job determined by the processor. Job arrival time (AT) 
indicates wall clock time of arrival of job in the system and 
worst case completion time (wc) is the minimum time 
required to complete the job by a processing unit. Thus the 
attribute of different jobs can be represented by 2. 

       JV = g (T, NIC, AT, wc)                                         (2) 

The Cloud service provider needs to allocate these N jobs 
among M number of processors such that cost function C as 
indicated in equation 3 is minimized. 

C  =  w1 * β (NIC ÷ MIPS ) + w2 *DL                  (3) 

ΔE =C(j) – C(i)                                                       (4) 
where w1 and w2 are predefined weights. It is very difficult 
to decide/optimize the weights, one criterion could be that 
more general the factor is, larger is the weight. Logic is 
user’s preference or importance given to a particular factor 
over the other. Here the later approach has been used and 
the optimization in then performed on the given set of 
weights. The weights are considered as w1 = 0.8 and w2 = 
0.2 such that their summation is 1. 
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The acceptance probabilities Pij by 

Pij(c) = min {1, exp ( - ( C(j) - C(i) ) / c ) }                        (5) 
 
The proposed algorithm is given below: 
 
Proposed Algorithm: 
 
Step 1: Randomly initialize a set of processing unit and 
initialize the control parameter to a very large positive 
value. 
Step 2: Repeat until the control parameter value reaches to 
the minimum:  
      Step 2 (a): Generate a random set of processing unit 
      and calculate ΔE using equation 3. 
      Step 2(b): Select the new set of processing unit with 
      probability Pij  calculated using equation 5. 
      Step 2 (c):   Repeat until inner loop break condition 
      is met . 
      Step 2 (d):  Decrease the temperature by a certain rate. 
      Step 2(e): Goto step 2 loop. 
Step 3: End 

 
IV.  EXPERIMENTAL ANALYSIS 

A.  Simulation Environment 
This research is conducted with CloudAnalyst [5] 
simulation toolkit which is modified with our proposed 
algorithm. One of the main objectives of CloudAnalyst is to 
separate the simulation experimentation exercise from a 
programming exercise, so a modeller can focus on the 
simulation complexities without spending too much time on 
the technicalities of programming using a simulation 
toolkit. The CloudAnalyst also enables a modeller to 
repeatedly execute simulations and to conduct a series of 
simulation experiments with slight parameters variations in 
a quick and easy manner. CloudAnalyst is capable of 
generating graphical output of the simulation results in the 
form of tables and charts, which is desirable to effectively 
summarize the large amount of statistics that is collected 
during the simulation. Its architecture in depicted figure 1 
and a snapshot of the GUI of CloudAnalyst simulation 
toolkit is shown in figure 2. 

 

 

 
CloudAnalyst provides modellers with a high degree of 
control over the experiment, by modelling entities and 
configuration options such as: Data Center, whose hardware 
configuration is defined in terms of physical machines 
composed of processors, storage devices, memory and 
internal bandwidth; Data Center virtual machine 
specification in terms of memory, storage and bandwidth 
quota. 

B. SIMULATION  SETUP 
For simulating  the proposed SA algorithm ,a hypothetical 
configuration has been generated keeping in mind the 
application of cloud in web-based e-mail system .As of 
January 2009 , over 500 millon people used Microsoft’s 
Web-based email, Hotmail or Windows Live Mail. 
 

.TABLE  I : CONFIGURATION OF SIMULATION ENVIRONMENT 

S.No 
User 
Base 

Region 

Simultaneous 
Online Users 
During Peak 

Hrs 

Simultaneous 
Online Users 
During Off-

peak Hrs 
1. UB1 0-N.America 5,70,000 57,000 
2. UB2 1-S.America 7,00,000 70,000 
3. UB3 2-Europe 4,50,000 45,000 
4. UB4 3-Asia 9,00,000 90,000 
5. UB5 4-Africa 1,25,000 12500 
6. UB6 5-Oceania 1,50,000 30,500 
 
Table I describes the simulation environment. The world is 
divided into six regions representing six major continents of 
the world. 
 
Six “User bases” modeling a group of users representing the 
six major continents of the world is considered .It is assumed 
out of the total registered users 5%  are online 
simultaneously during the peak time and only one tenth is 
on line during the off-peak. Size of virtual machines used to 
host applications in the experiment is 100MB. Virtual 
machines have 1GB of RAM memory and have 10MB of 
available bandwidth. Simulated hosts have x86 architecture. 
Each simulated data centre hosts a particular amount of virtual 
machines (VMs) dedicated for the application. Machines have 
4 GB of RAM and 100GB of storage. Each machine has 4 
CPUs, and each CPU has a capacity power of 10000 MIPS. 
A time-shared policy is used to schedule resources to VMs. 

Fig. 2: GUI of CloudAnalyst  

Fig. 1:  Architecture of CloudAnalyst build on CloudSim 
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C. RESULTS 
 For experimentation several scenarios are considered. 
Experiment is started by taking one Data Center (DC) 
having 25, 50 and 75 VMs to process all the requests 
around the world. 
 
TABLE II describes this simulation setup with calculated 
overall average response time (RT) in ms for SA , SHC , 
RR and FCFS. The performance analysis graph for it is 
depicted in figure 3 where Cloud Configuration (CC) is 

along x-axis and response time in ms is along y-axis. Next 
two DCs each having 25, 50, 75 VMs are considered as 
given in TABLE III and the corresponding graph is shown 
in figure 4. Subsequently three, four, five and six DCs are 
considered with combination 25, 50 and 75 VMs for each 
CCs as given in TABLES IV, V, VI and VII. The 
corresponding performance analysis graphs are displayed 
beside them in figures 5, 6, 7 and 8. 

 
 
 

TABLE II: SIMULATION SCENARIO AND CALCULATED OVERALL AVERAGE RESPONSE TIME (RT) IN (MS) USING ONE DATA CENTER 

TABLE III: SIMULATION SCENARIO AND CALCULATED OVERALL AVERAGE RESPONSE TIME (RT) IN (MS) USING TWO DATA CENTERS 

 
TABLE IV: SIMULATION SCENARIO AND CALCULATED OVERALL AVERAGE RESPONSE TIME (RT) IN (MS) USING THREE DATA CENTERS 

S.No 
Cloud 

configuration 
DC specification RT using SA RT using SHC RT using RR RT using FCFS 

1. CC1 Each with 25 VMs 356.63 361.82 366.17 368.34 
2. CC2 Each with  50  VMs 355.46 358.25 363.52 367.52 
3. CC3 Each with 75 VMs 351.45 355.73 360.18 366.56 
4 CC4 Each with 25,50 and 75 VMs 350.68 359.01 361.21 367.87 

 
TABLE V: SIMULATION SCENARIO AND CALCULATED OVERALL AVERAGE RESPONSE TIME (RT) IN (MS) USING FOUR DATA CENTERS 

S.No 
Cloud 

configuration 
DC specification RT using SA RT using SHC RT using RR RT using FCFS 

1. CC1 Each with 25 VMs 349.23 354.35 359.35 360.95 
2. CC2 Each with  50  VMs 345.16 350.71 356.93 359.97 
3. CC3 Each with 75 VMs 341.25 346.46 352.09 358.44 
4 CC4 Each with 25,50 and 75 VMs 339.18 344.31 351 355.94 

 
TABLE VI: SIMULATION SCENARIO AND CALCULATED OVERALL AVERAGE RESPONSE TIME (RT) IN (MS) USING FIVE DATA CENTERS 

S.No 
Cloud 

configuration 
DC specification RT using SA RT using SHC RT using RR RT using FCFS 

1. CC1 Each with 25 VMs 337.53 342.86 348.57 352.05 
2. CC2 Each with  50  VMs 327.46 332.84 339.76 345.44 
3. CC3 Each with 75 VMs 324.75 329.46 335.88 342.79 
4 CC4 Each with 25,50 and 75 VMs 321.68 326.64 334.01 338.01 

 
TABLE VII: SIMULATION SCENARIO AND CALCULATED OVERALL AVERAGE RESPONSE TIME (RT) IN (MS) USING SIX DATA CENTERS 

S.No 
Cloud 

configuration 
DC specification RT using SA RT using SHC RT using RR RT using FCFS 

1. CC1 Each with 25 VMs 331.65 336.96 341.87 349.26 
2. CC2 Each with  50  VMs 326.11 331.56 338.14 344.04 
3. CC3 Each with 75 VMs 324.75 327.78 333.67 339.87 
4 CC4 Each with 25,50 and 75 VMs 321.68 326.64 334.01 338.01 

 

S.No 
Cloud 

configuration 
DC specification RT using SA RT using SHC RT using RR RT using FCFS 

1. CC1 Each with 25 VMs 329.03 329.02 330 330.11 
2. CC2 Each with  50  VMs 328.46 329.01 329.42 329.42 
3. CC3 Each with 75 VMs 328.22 329.34 329.67 329.44 

S.No 
Cloud 

configuration 
DC specification 

RT 
using 
SA 

RT 
using 
SHC 

RT 
using 
RR 

RT 
using 
FCFS 

1. CC1 Two DCs with 25 VMs each 365.43 370.44 376.27 381.34 
2. CC2 Two DCs with 50 VMs each 360.46 365.15 372.49 377.52 
3. CC3 Two DCs with 75 VMs each 360.11 364.73 369.78 375.56 
4. CC4 Two DCs with 25, 50 VMs each 355.34 361.72 367.91 373.87 
5. CC5 Two DCs with 25, 75 VMs each 356.21 362.23 369.45 372.23 
6. CC6 Two DCs with 75, 50 VMs each 355.32 357.04 356.01 361.61 
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Fig. 3: Performance analysis of proposed SA with SHC, RR and 
FCFS using One Data Center 

Fig. 4: Performance analysis of proposed SA with SHC, RR and 
FCFS using Two Data Center 

Fig. 5: Performance analysis of proposed SA with SHC, FCFS and 
RR using Three Data Centers 

Fig. 6: Performance analysis of proposed SA with SHC, RR and 
FCFS using Four Data Centers 

Fig. 7: Performance analysis of proposed SA with SHC, RR and 
FCFS using Five Data Centers 

Fig. 8: Performance analysis of proposed GA with SHC, RR and 
FCFS using Six Data Centers 
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V. CONCLUSIONS 
In this paper, we have proposed an efficient algorithm to 
distribute massive work load in cloud computing, based on 
a well-known optimization method, Simulated Annealing 
which can avoid becoming trapped at local minima. The 
performance analysis in terms of response time (ms) among 
the proposed SA algorithm and some existing algorithms 
shows that the proposed method not only outperforms but 
also guarantees the QoS requirement of customer requests. 
Though we have assumed that all the jobs are of the same 
priority which may not be the actual case, this can be 
accommodated in the JV and subsequently taken care in 
fitness function. Though SA algorithm based load balancing 
strategy balances the incoming requests among the 
available virtual machine efficiently, we shall strive to find 
more and more efficient methods using soft computing 
approaches for load balancing to obtain better results. 
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