
Simulated Annealing (SA) based Load Balancing
Strategy for Cloud Computing

Brototi Mondal#1, Avishek Choudhury#2
1Department of Computer Science and Engineering,

Supreme Knowledge Foundation Group of Institutions,
Mankundu-712 139, India

#2Department of Computer Science, New Alipore College,
Kolkata-700053, India

Abstract — Cloud computing is a new computing paradigm
which uses the combination of two concepts i.e. “software-as-
a-service” and “utility computing”, provides convenient and
on-demand services to requested end users by instantiating the
infrastructure and using the resources dynamically. Load
balancing in Cloud computing is still one of the main
challenges for the researchers. As load balancing distributes
the dynamic workload across multiple resources for achieving
optimal resource utilization to ensure that no single resource is
either overwhelmed or underutilized, this can be considered as
an optimization problem. In this paper a load balancing
strategy based on Simulated Annealing (SA) has been
proposed which balances the load of the cloud infrastructure.
To measure the performance of the algorithm, an existing
simulator CloudAnalyst is modified and the simulation results
show the overall performance of the proposed algorithm is
better than of the existing approaches like First Come First
Serve (FCFS), Round Robing (RR) and a local search
algorithm i.e. Stochastic Hill Climbing (SHC).

Keywords— Cloud computing; Load balancing;
Simulated Annealing;

I. INTRODUCTION

A model for convenient and on-demand network access to a
shared pool of configurable computing resources that can
be rapidly provisioned and released with minimal
management efforts is cloud computing [1]. Its
infrastructure is used by businesses and users to access
application services from anywhere in the world on demand.
Thus it represents as a new paradigm for the dynamic
provisioning of computing services, typically supported by
state-of-the-art Data Centers containing ensembles of
networked Virtual Machines (VMs) [2]. The biggest and
best known Cloud Computing providers include Amazon
with EC2, Microsoft with Azure and Google with
GoogleApps (e.g. Gmail, Google Docs, Google Calendar).
Also, there are some popular large scaled applications like
social-networking and ecommerce which are benefited by
minimizing the costs using cloud computing. Due to the
exponential growth of cloud computing it has been widely
adopted by the industry and thus making a rapid expansion
in availability of resources in the Internet. With the demand
of large scale internet applications on cloud, both
developers and researchers need to think about handling of
massive requests. Whenever such an outburst occurs, the

primary challenge then becomes to keep the performance
same or better. Thus in spite of glorious future of Cloud
Computing, many critical problems still need to be explored
for its perfect realization [3] and load balancing is one of
these important issues.
To summarize, this paper makes the following contributions:

 A soft computing approach based algorithm
Simulated Annealing (SA) has been used to solve
this optimization problem to distribute the
dynamic workload across multiple resources for
achieving optimal resource utilization. More
information on how this work differs from the
other load balancing algorithms can be found in
section II and section III.

 The performance of the proposed algorithm is
compared with two commonly used scheduling
algorithms FCFS and RR and a local search
algorithm Stochastic Hill Climbing (SHC) [6]
which is described in section IV.

The rest of this paper is organized as follows: Section II
gives an overview of the related work; Section III discusses
the basic features of Simulated Annealing (SA) algorithm
along with the implementation details of our proposed SA
based load balancing algorithm. The simulator
environments as well as the simulation work loads are
explained in Section IV. Also Section IV presents and
analyses the experimental results and Section V concludes
the study and highlights future work.

II. RELATED WORK

Load balancing in the cloud differs from classical thinking
on load-balancing architecture and implementation by using
commodity servers to perform it. Load Balancing allows
distribution of workload across one or more servers, data
centers, hard drives, or other computing resources, thereby
providing Cloud Service Providers (CSP) a mechanism to
distribute application requests across any number of
application deployments located in data centres [4].

There have been various research efforts on the approaches
of Load Balancing. In [8], Minimum Execution Time (MET)

Brototi Mondal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3307-3312

www.ijcsit.com 3307

is used to assign each job in arbitrary order to the nodes on
which it is expected to be executed fastest, regardless of the
current load on that node. Another approach [5] Min-Min
scheduling algorithm calculates the minimum completion
time for every unscheduled job and then the jobs are
assigned with the minimum completion time to the node
that offers it this time. Yang Xu et. al. has proposed a novel
model to balance data distribution to improve cloud
computing performance in data-intensive applications, such
as distributed data mining [9]. A few soft computing
techniques like Ant Colony [7] are also reported in
literature. Some existing scheduling algorithms like Round
Robin and FCFS for load balancing also exist. In our
previous papers, we proposed a local search algorithm
Stochastic Hill Climbing [6] and Genetic Algorithm [4]
based load balancing approaches in cloud computing.

III. IMPLEMENTATION DETAILS

A. Load Balancing Using Simulated Annealing
Load balancing is indispensable for cloud computing.
Firstly, the cloud service provider (CSP) must use load
balancing in its own cloud computing platform to provide a
high efficient solution for the user. Secondly, a inter CSP
load balancing mechanism is needed to construct a low cost
and infinite resource pool for the consumer. Load balancing
in cloud computing provides an organization with the
ability to distribute application requests across any number
of application deployments located in data centers and
through cloud computing providers.

The procedures for solving an optimization problem are
divided into two categories. Incomplete methods may not
guarantee correct answers for all inputs. The well-known
incomplete local search algorithm, Stochastic Hill Climbing
that never makes "downhill" moves toward states with
lower value, because it can get stuck on a local maximum.
Complete methods which guarantee either to find a valid
assignment of values to variables or prove that no such
assignment exists. But they require exponential time in the
worst case, which is not acceptable in the cloud computing
domain. A purely random walk is complete but extremely
inefficient. Simulated Annealing is an algorithm which
combines hill climbing with random walk in some way that
yields both efficiency and completeness.

B. Simulated Annealing
SA is a well known iterative improvement approach to
optimization problems and also, it can be viewed as an
algorithm used in statistical physics for computer
simulation of the annealing of a solid to its ground state, i.e.,
the state with minimum energy. Given the set of
configurations, a cost function and a neighbourhood
structure, we can define the iterative improvement
algorithm as follows. At the beginning of each iteration, a
configuration i is given and a transition to a configuration j
ϵ P(i) is generated where for each configuration i , P(i) is a
subset of configurations, called the neighbourhood of i. If
C(j) < C(i), the start configuration in the next iteration is j,
otherwise it is i. If the transitions are generated in some
exhaustive enumerative way, then the algorithm terminates
by definition in a local minimum. Unfortunately, a local

minimum may differ considerably in cost from a global
minimum. Simulated annealing can be viewed as an attempt
to find near-optimal local minima by allowing the
acceptance of cost-increasing transitions. More precisely, if
i and j ϵ P(i) are the two configurations to choose from, then
the algorithm continues with configuration j with a
probability given by min{1 , exp(-(C(j) - C(i))/c)} where c is
a positive control parameter, which is gradually decreased
during the execution of the algorithm. Thus, c is the
analogue of the temperature in the physical annealing
process. Probability decreases for increasing values of C(j)
- C(i) and for decreasing values of c, and cost-decreasing
transitions are always accepted.

C. SA for Load Balancing in Cloud
The problem of load balancing can be formulated as
allocating N number of jobs submitted by cloud users to M
number of processing units in the Cloud at any particular
instance of time .Each processing unit will have a
processing unit vector (PV) which indicates the current
status of processing unit utilization. PV consists of MIPS,
indicating how many million instructions can be executed
by that machine per second and β is the cost of execution of
instruction and DL is delay cost. The delay cost is an
estimate of penalty, which Cloud service provider needs to
pay to customer in the event of job finishing actual time
being more than the deadline advertised by the service
provider ,

 PV = g (MIPS, β, DL) (1)

Similarly each job submitted by cloud user can be
represented by a job unit vector (JV). T represents the type
of service required by the job, Software as a Service
(SAAS), Infrastructure as a Service (IAAS) and Platform-
as-a-Service (PAAS). NIC represents the number of
instructions present in the job; this is count of instruction in
the job determined by the processor. Job arrival time (AT)
indicates wall clock time of arrival of job in the system and
worst case completion time (wc) is the minimum time
required to complete the job by a processing unit. Thus the
attribute of different jobs can be represented by 2.

 JV = g (T, NIC, AT, wc) (2)

The Cloud service provider needs to allocate these N jobs
among M number of processors such that cost function C as
indicated in equation 3 is minimized.

C = w1 * β (NIC ÷ MIPS) + w2 *DL (3)

ΔE =C(j) – C(i) (4)
where w1 and w2 are predefined weights. It is very difficult
to decide/optimize the weights, one criterion could be that
more general the factor is, larger is the weight. Logic is
user’s preference or importance given to a particular factor
over the other. Here the later approach has been used and
the optimization in then performed on the given set of
weights. The weights are considered as w1 = 0.8 and w2 =
0.2 such that their summation is 1.

Brototi Mondal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3307-3312

www.ijcsit.com 3308

The acceptance probabilities Pij by

Pij(c) = min {1, exp (- (C(j) - C(i)) / c) } (5)

The proposed algorithm is given below:

Proposed Algorithm:

Step 1: Randomly initialize a set of processing unit and
initialize the control parameter to a very large positive
value.
Step 2: Repeat until the control parameter value reaches to
the minimum:
 Step 2 (a): Generate a random set of processing unit
 and calculate ΔE using equation 3.
 Step 2(b): Select the new set of processing unit with
 probability Pij calculated using equation 5.
 Step 2 (c): Repeat until inner loop break condition
 is met .
 Step 2 (d): Decrease the temperature by a certain rate.
 Step 2(e): Goto step 2 loop.
Step 3: End

IV. EXPERIMENTAL ANALYSIS

A. Simulation Environment
This research is conducted with CloudAnalyst [5]
simulation toolkit which is modified with our proposed
algorithm. One of the main objectives of CloudAnalyst is to
separate the simulation experimentation exercise from a
programming exercise, so a modeller can focus on the
simulation complexities without spending too much time on
the technicalities of programming using a simulation
toolkit. The CloudAnalyst also enables a modeller to
repeatedly execute simulations and to conduct a series of
simulation experiments with slight parameters variations in
a quick and easy manner. CloudAnalyst is capable of
generating graphical output of the simulation results in the
form of tables and charts, which is desirable to effectively
summarize the large amount of statistics that is collected
during the simulation. Its architecture in depicted figure 1
and a snapshot of the GUI of CloudAnalyst simulation
toolkit is shown in figure 2.

CloudAnalyst provides modellers with a high degree of
control over the experiment, by modelling entities and
configuration options such as: Data Center, whose hardware
configuration is defined in terms of physical machines
composed of processors, storage devices, memory and
internal bandwidth; Data Center virtual machine
specification in terms of memory, storage and bandwidth
quota.

B. SIMULATION SETUP
For simulating the proposed SA algorithm ,a hypothetical
configuration has been generated keeping in mind the
application of cloud in web-based e-mail system .As of
January 2009 , over 500 millon people used Microsoft’s
Web-based email, Hotmail or Windows Live Mail.

.TABLE I : CONFIGURATION OF SIMULATION ENVIRONMENT

S.No
User
Base

Region

Simultaneous
Online Users
During Peak

Hrs

Simultaneous
Online Users
During Off-

peak Hrs
1. UB1 0-N.America 5,70,000 57,000
2. UB2 1-S.America 7,00,000 70,000
3. UB3 2-Europe 4,50,000 45,000
4. UB4 3-Asia 9,00,000 90,000
5. UB5 4-Africa 1,25,000 12500
6. UB6 5-Oceania 1,50,000 30,500

Table I describes the simulation environment. The world is
divided into six regions representing six major continents of
the world.

Six “User bases” modeling a group of users representing the
six major continents of the world is considered .It is assumed
out of the total registered users 5% are online
simultaneously during the peak time and only one tenth is
on line during the off-peak. Size of virtual machines used to
host applications in the experiment is 100MB. Virtual
machines have 1GB of RAM memory and have 10MB of
available bandwidth. Simulated hosts have x86 architecture.
Each simulated data centre hosts a particular amount of virtual
machines (VMs) dedicated for the application. Machines have
4 GB of RAM and 100GB of storage. Each machine has 4
CPUs, and each CPU has a capacity power of 10000 MIPS.
A time-shared policy is used to schedule resources to VMs.

Fig. 2: GUI of CloudAnalyst

Fig. 1: Architecture of CloudAnalyst build on CloudSim

Brototi Mondal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3307-3312

www.ijcsit.com 3309

C. RESULTS
 For experimentation several scenarios are considered.
Experiment is started by taking one Data Center (DC)
having 25, 50 and 75 VMs to process all the requests
around the world.

TABLE II describes this simulation setup with calculated
overall average response time (RT) in ms for SA , SHC ,
RR and FCFS. The performance analysis graph for it is
depicted in figure 3 where Cloud Configuration (CC) is

along x-axis and response time in ms is along y-axis. Next
two DCs each having 25, 50, 75 VMs are considered as
given in TABLE III and the corresponding graph is shown
in figure 4. Subsequently three, four, five and six DCs are
considered with combination 25, 50 and 75 VMs for each
CCs as given in TABLES IV, V, VI and VII. The
corresponding performance analysis graphs are displayed
beside them in figures 5, 6, 7 and 8.

TABLE II: SIMULATION SCENARIO AND CALCULATED OVERALL AVERAGE RESPONSE TIME (RT) IN (MS) USING ONE DATA CENTER

TABLE III: SIMULATION SCENARIO AND CALCULATED OVERALL AVERAGE RESPONSE TIME (RT) IN (MS) USING TWO DATA CENTERS

TABLE IV: SIMULATION SCENARIO AND CALCULATED OVERALL AVERAGE RESPONSE TIME (RT) IN (MS) USING THREE DATA CENTERS

S.No
Cloud

configuration
DC specification RT using SA RT using SHC RT using RR RT using FCFS

1. CC1 Each with 25 VMs 356.63 361.82 366.17 368.34
2. CC2 Each with 50 VMs 355.46 358.25 363.52 367.52
3. CC3 Each with 75 VMs 351.45 355.73 360.18 366.56
4 CC4 Each with 25,50 and 75 VMs 350.68 359.01 361.21 367.87

TABLE V: SIMULATION SCENARIO AND CALCULATED OVERALL AVERAGE RESPONSE TIME (RT) IN (MS) USING FOUR DATA CENTERS

S.No
Cloud

configuration
DC specification RT using SA RT using SHC RT using RR RT using FCFS

1. CC1 Each with 25 VMs 349.23 354.35 359.35 360.95
2. CC2 Each with 50 VMs 345.16 350.71 356.93 359.97
3. CC3 Each with 75 VMs 341.25 346.46 352.09 358.44
4 CC4 Each with 25,50 and 75 VMs 339.18 344.31 351 355.94

TABLE VI: SIMULATION SCENARIO AND CALCULATED OVERALL AVERAGE RESPONSE TIME (RT) IN (MS) USING FIVE DATA CENTERS

S.No
Cloud

configuration
DC specification RT using SA RT using SHC RT using RR RT using FCFS

1. CC1 Each with 25 VMs 337.53 342.86 348.57 352.05
2. CC2 Each with 50 VMs 327.46 332.84 339.76 345.44
3. CC3 Each with 75 VMs 324.75 329.46 335.88 342.79
4 CC4 Each with 25,50 and 75 VMs 321.68 326.64 334.01 338.01

TABLE VII: SIMULATION SCENARIO AND CALCULATED OVERALL AVERAGE RESPONSE TIME (RT) IN (MS) USING SIX DATA CENTERS

S.No
Cloud

configuration
DC specification RT using SA RT using SHC RT using RR RT using FCFS

1. CC1 Each with 25 VMs 331.65 336.96 341.87 349.26
2. CC2 Each with 50 VMs 326.11 331.56 338.14 344.04
3. CC3 Each with 75 VMs 324.75 327.78 333.67 339.87
4 CC4 Each with 25,50 and 75 VMs 321.68 326.64 334.01 338.01

S.No
Cloud

configuration
DC specification RT using SA RT using SHC RT using RR RT using FCFS

1. CC1 Each with 25 VMs 329.03 329.02 330 330.11
2. CC2 Each with 50 VMs 328.46 329.01 329.42 329.42
3. CC3 Each with 75 VMs 328.22 329.34 329.67 329.44

S.No
Cloud

configuration
DC specification

RT
using
SA

RT
using
SHC

RT
using
RR

RT
using
FCFS

1. CC1 Two DCs with 25 VMs each 365.43 370.44 376.27 381.34
2. CC2 Two DCs with 50 VMs each 360.46 365.15 372.49 377.52
3. CC3 Two DCs with 75 VMs each 360.11 364.73 369.78 375.56
4. CC4 Two DCs with 25, 50 VMs each 355.34 361.72 367.91 373.87
5. CC5 Two DCs with 25, 75 VMs each 356.21 362.23 369.45 372.23
6. CC6 Two DCs with 75, 50 VMs each 355.32 357.04 356.01 361.61

Brototi Mondal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3307-3312

www.ijcsit.com 3310

Fig. 3: Performance analysis of proposed SA with SHC, RR and
FCFS using One Data Center

Fig. 4: Performance analysis of proposed SA with SHC, RR and
FCFS using Two Data Center

Fig. 5: Performance analysis of proposed SA with SHC, FCFS and
RR using Three Data Centers

Fig. 6: Performance analysis of proposed SA with SHC, RR and
FCFS using Four Data Centers

Fig. 7: Performance analysis of proposed SA with SHC, RR and
FCFS using Five Data Centers

Fig. 8: Performance analysis of proposed GA with SHC, RR and
FCFS using Six Data Centers

Brototi Mondal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3307-3312

www.ijcsit.com 3311

V. CONCLUSIONS
In this paper, we have proposed an efficient algorithm to
distribute massive work load in cloud computing, based on
a well-known optimization method, Simulated Annealing
which can avoid becoming trapped at local minima. The
performance analysis in terms of response time (ms) among
the proposed SA algorithm and some existing algorithms
shows that the proposed method not only outperforms but
also guarantees the QoS requirement of customer requests.
Though we have assumed that all the jobs are of the same
priority which may not be the actual case, this can be
accommodated in the JV and subsequently taken care in
fitness function. Though SA algorithm based load balancing
strategy balances the incoming requests among the
available virtual machine efficiently, we shall strive to find
more and more efficient methods using soft computing
approaches for load balancing to obtain better results.

ACKNOWLEDGMENT
We would like to thank Prof. Kausik Dasgupta for his
comments and reviews on this work. We also thank other
reviewers for their feedback on the earlier draft of this
paper.

REFERENCES
[1] “Security Issues and their Solution in Cloud Computing” ISSN

(Online): 2229-6166, Prince Jain
[2] R. R.Buyya, R.Ranjan,” Intercloud: Utility-oriented federation of

cloud computing environments for scaling of application services”,in:
ICA3PP 2010, Part I, LNCS 6081., 2010, pp. 13–31.

[3] . Vouk, “Cloud computing- issues, research and implementations”, in
Proc. of Information Technology Interfaces, pp. 31-40, 2008

[4] Kousik Dasguptaa, Brototi Mandalb, Paramartha Duttac, Jyotsna
Kumar Mondald, Santanu Dame, “A Genetic Algorithm (GA) based
Load Balancing Strategy for Cloud Computing”:in CIMTA- 2013,
Procedia Technology 10 (2013) 340 – 347

[5] B. Wickremasinghe, R. N. Calheiros and R. Buyya, “Cloudanalyst:
A cloudsim-based visual modeller for analysing cloud computing
environmentsand applications”, in Proc. of Proceedings of the 24th
International Conference on Advanced Information Networking and
Applications (AINA 2010), Perth, Australia, pp.446-452, 2010

[6] Brototi Mondal,Kousik Dasgupta and Paramartha Dutta, “Load
Balancing in Cloud Computing using Stochastic Hill Climbing-A
Soft Computing Approach”, in Proc. of C3IT-2012, Elsevier,
Procedia Technology 4(2012), pp.783-789, 2012.

[7] Ratan Mishra and Anant Jaiswal, “Ant colony Optimization: A
Solution of Load balancing in Cloud”,in International Journal of
Web & Semantic Technology (IJWesT), Vol.3, No.2, pp. 33–50, 2012

[8] T. R.Armstrong, D.Hensgen, The relative performance of various
mapping algorithms is independent of sizable variances in runtime
predictions, in: 7th IEEE Heterogeneous Computing Workshop
(HCW ’98), 1998, pp. 79–87

[9] Yang Xu, Lei Wu, Liying Guo, Zheng Chen,Lai Yang, Zhongzhi Shi,
“An Intelligent Load Balancing Algorithm Towards Efficient Cloud
Computing”, in Proc. of AI for Data Center Management and Cloud
Computing: Papers, from the 2011 AAAI Workshop (WS-11-08),
pp. 27–32, 2008

Brototi Mondal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (4) , 2015, 3307-3312

www.ijcsit.com 3312

